DATA RECEIVER CIRCUIT

Applicants: SK hynix Inc., Gyeonggi-do (KR);
Seoul National University R&DB Foundation, Seoul (KR)

Inventors: Suhwan Kim, Seoul (KR);
Deog-Kyoon Jeong, Seoul (KR);
Sang-Yoon Lee, Seoul (KR);
Joo-Hyung Chae, Seoul (KR);
Chang-Ho Hyun, Seoul (KR)

Assignees: SK hynix Inc., Gyeonggi-do (KR);
Seoul National University R&DB Foundation, Seoul (KR)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Filed: Dec. 31, 2018

Prior Publication Data
US 2019/0268005 A1 Aug. 29, 2019

Foreign Application Priority Data

Int. Cl.
H04L 7/033 (2006.01)
H03L 7/089 (2006.01)

CPC H03L 7/0891 (2013.01); H03L 7/097 (2013.01); H04L 7/0001 (2013.01); H04L 7/033 (2013.01)

ABSTRACT

A data receiver circuit may include: a delay circuit suitable for delaying first and second strobe signals and generating delayed first and second strobe signals; a receiver circuit suitable for sampling data in synchronization with the delayed first strobe signal; a second receiver circuit suitable for sampling the data in synchrononization with the delayed second strobe signal; an enable signal generation circuit suitable for generating an enable signal indicating whether the data was transitioned; a transition level generation circuit suitable for generating a transition level signal indicating a transition direction of the data; and a control logic suitable for changing a delay value of the delay circuit in response to the transition level signal and the sampling result of the sampling circuit, when the enable signal is activated.

19 Claims, 4 Drawing Sheets
(51) Int. Cl.
H04L 7/00 (2006.01)
H03L 7/087 (2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

* cited by examiner
FIG. 2
DATA RECEIVER CIRCUIT

CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority under 35 U.S.C. § 119 to
Korean Patent Application No. 10-2018-0024438, filed on
Feb. 28, 2018, which is incorporated herein by reference in
its entirety.

BACKGROUND

1. Field

The present invention relates to a data receiver circuit
which receives data using a strobe signal.

2. Discussion of the Related Art

Integrated circuits, which may be used to implement
memory system components, exchange data. In order to
exchange data at high speed, integrated circuits require a
strobe signal to correctly recognize associated data. Therefore,
when exchanging data at high speed, the integrated
circuits exchange the strobe signal as well as the data.

For example, most memory devices exchange a strobe
signal for strobing data, while exchanging the data. For a
stable data transmitting and receiving operation, the data
must be correctly aligned with the strobe signal. FIG. 1
illustrates that strobe signals used in memory devices are
aligned with data, that is, edges of strobe signals DQS_t and
DQS_c are aligned with the centers of data DQ. For the
alignment between the data DQ and the strobe signals
DQS_t and DQS_c, as shown in FIG. 1, a training process
between a memory device and a memory controller may be
performed during an initialization process of the memory
device. After the training process, however, the alignment
may be distorted by a process, voltage and temperature
(PVT) variation over time. Therefore, there is a need for a
technique for aligning the data and the strobe signal, after
the training process.

SUMMARY

Various embodiments are directed to a technique for
aligning data and a strobe signal, particularly in integrated
circuits.

In an embodiment, a data receiver circuit may include:
A delay circuit suitable for delaying first and second strobe
signals and generating delayed first and second strobe
signals; a first receiver circuit suitable for sampling data in
synchronization with the delayed first strobe signal; a second
receiver circuit suitable for sampling the data in
synchronization with the delayed second strobe signal; an enable
signal generation circuit suitable for generating an enable
signal indicating whether the data transitioned; a transition
level generation circuit suitable for generating a transition
level signal indicating a transition direction of the data; a
phase shift circuit suitable for shifting the phase of the
delayed first strobe signal by a set degree and generating a
shifted first strobe signal; a sampling circuit suitable for
sampling the data in synchronization with the shifted first
strobe signal and generating a sampling result; and a control
logic suitable for changing a delay value of the delay circuit
in response to the transition level signal and the sampling
result of the sampling circuit, when the enable signal is activated.

In another embodiment, a circuit may include: a delay
circuit suitable for delaying first and second strobe signals
by a set delay value and generating delayed first and second
strobe signals; a receiver circuit suitable for sampling data in
synchronization with the delayed first strobe signal, and
sampling the data in synchronization with the delayed
second strobe signal; a phase shift circuit suitable for
shifting the phase of the delayed first strobe signal by a set
degree and generating a shifted first strobe signal; a sam-
pling circuit suitable for sampling the data in synchronization
with the shifted first strobe signal and generating a
sampling result; and a control logic suitable for controlling
the delay value of the delay circuit based on the sampling
result of the sampling circuit when the data transitioned.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates that strobe signals are aligned with data.
FIG. 2 is a diagram illustrating a data receiver circuit in
accordance with an embodiment of the present invention.
FIG. 3 is a timing diagram illustrating an example of
an operation of a data receiver circuit in accordance with
an embodiment of the present invention.
FIG. 4 is a timing diagram illustrating another example of
an operation of a data receiver circuit in accordance with
an embodiment of the present invention.

DETAILED DESCRIPTION

Various embodiments will be described below in more
detail with reference to the accompanying drawings. The
present invention may, however, be embodied in different
forms and configurations. Thus, the present invention is
not limited to the embodiments set forth herein. Rather, these
embodiments are provided so that this disclosure is thorough
and complete and fully conveys the scope of the present
invention to those skilled in the art. Throughout the
disclosure, like reference numerals refer to like parts throughout
the various figures and embodiments of the present inven-
tion. Also, throughout the specification, reference to “an
embodiment,” “another embodiment,” or the like is not
necessarily to only one embodiment, and different refer-
ences to any such phrase are not necessarily to the same
embodiment(s).

FIG. 2 is a diagram illustrating a data receiver circuit 200
in accordance with an embodiment.

Referring to FIG. 2, the data receiver circuit 200 may
include a delay circuit 210, a first receiver circuit 221, a
second receiver circuit 222, an enable signal generation
circuit 230, a transition level generation circuit 240, a
phase shift circuit 250, a sampling circuit 260 and a control
logic 270.

The delay circuit 210 may generate delayed first and
second strobe signals DQS_t.d and DQS_c.d by delaying
first and second strobe signals DQS_t and DQS_c. The delay
circuit 210 may include first and second delay lines 211
and 212. The first delay line 211 may receive the first strobe
signal DQS_t from a first strobe pad 202, delay the received
first strobe signal DQS_t, and output the delayed first strobe
signal DQS_t.d. The first delay line 211 may have a delay value
which is adjusted according to a delay code DCO(0:N). The second delay line 212 may receive the
second strobe signal DQS_c from a second strobe pad 203,
delay the received second strobe signal DQS_c, and output
the delayed second strobe signal DQS_c.d. The second delay
line 212 may have a delay value which is adjusted according
to the delay code DCO(0:N). In various
embody, the first and second delay lines 211 and 212 may have the same delay value. The first and second strobe signals DQS_t and DQS_c may have a phase difference of 180 degrees therebetween. That is, the second strobe signal DQS_c may correspond to the inverted signal of the first strobe signal DQS_t.

The first receiver circuit 221 may sample data DQ of a data pad 201 in synchronization with the delayed first strobe signal DQS_t. Specifically, the first receiver circuit 221 may generate first sampling data OUT_t by comparing the data DQ to the level of a reference voltage VREF at a rising edge of the delayed first strobe signal DQS_t. In various embodiments, the reference voltage VREF may have an intermediate level between a logic high level and a logic low level.

The second receiver circuit 222 may sample the data DQ of the data pad 201 in synchronization with the delayed second strobe signal DQS_c. Specifically, the second receiver circuit 222 may generate second sampling data OUT_c by comparing the data DQ to the level of the reference voltage VREF at a rising edge of the delayed second strobe signal DQS_c. The enable signal generation circuit 230 may generate an enable signal EN indicating whether the data DQ transitioned. The enable signal generation circuit 230 may activate the enable signal EN when the first sampling data OUT_t from the first receiver circuit 221 and the second sampling data OUT_c from the second receiver circuit 222 are different from each other. When the first and second sampling data OUT_t and OUT_c are different from each other, it may indicate that the data DQ transitioned. In various embodiments, the enable signal generation circuit 230 may include an XOR gate which receives the first and second sampling data OUT_t and OUT_c, performs an XOR operation and outputs the enable signal EN in accordance with the result of the XOR operation.

The transition level generation circuit 240 may generate a transition level signal COM_ST indicating the transition direction of the data DQ. The transition level generation circuit 240 may generate the transition level signal COM_ST by sampling the first sampling data OUT_t in synchronization with the delayed second strobe signal DQS_c. In various embodiments, the transition level generation circuit 240 may include a D flip-flop which receives the first sampling data OUT_t through an input terminal D thereof, receives the delayed second strobe signal DQS_c through a clock terminal thereof, and outputs the transition level signal COM_ST through an output terminal Q thereof. When the enable signal EN is activated and the transition level signal COM_ST is at a high level, it may indicate that a logic level of the data DQ transitioned from high to low. When the enable signal EN is activated and the transition level signal COM_ST is at a low level, it may indicate that a logic level of the data DQ transitioned from low to high.

The phase shift circuit 250 may generate a shifted first strobe signal DQS_90 by shifting the delayed first strobe signal DQS_t by a certain degree, for example, 90 degrees. In various embodiments, the phase shift circuit 250 may include a delay circuit which has a delay value corresponding to 1/4 of one cycle of the first strobe signal DQS_t. The phase shift circuit 250 may include two or more delay circuits to set a suitable delay value.

The sampling circuit 260 may sample the data DQ from the data pad 201 in synchronization with the shifted first strobe signal DQS_90. Specifically, the sampling circuit 260 may generate a sampling result SAMP by comparing the data DQ to the level of the reference voltage VREF at a rising edge of the shifted first strobe signal DQS_90.

The control logic 270 may generate the delay code DCODE<0:N> for deciding the delay value of the delay circuit 210. The control logic 270 may increase or decrease the value of the delay code DCODE<0:N> while the enable signal EN is activated, and fix the value of the delay code DCODE<0:N> while the enable signal EN is deactivated. In order to adjust the delay value of the delay circuit 210, i.e., the delay code DCODE<0:N>, the control logic 270 needs to recognize that edges (e.g., rising edges) of the delayed first and second strobe signals DQS_t and DQS_c lead or lag behind the center of the data DQ. However, when the data DQ do not transition, the control logic 270 cannot recognize that the rising edges of the delayed first and second strobe signals DQS_t and DQS_c lag or lead behind the center of the data DQ.

When the enable signal EN is activated, the control logic 270 may increase or decrease the value of the delay code DCODE<0:N> according to the levels of the transition level signal COM_ST and the sampling result SAMP. (1) When the transition level signal COM_ST is at a high level and the sampling result SAMP is at a low level, it may indicate that a logic level of the data DQ transitioned from high to low, and the data DQ was sampled as a low level at a rising edge of the shifted first strobe signal DQS_90. This may indicate that the rising edge of the delayed first strobe signal DQS_t lags behind the center of the data DQ. Therefore, the control logic 270 may increase the delay value of the delay circuit 210 by increasing the value of the delay code DCODE<0:N>. (2) When the transition level signal COM_ST is at a high level and the sampling result SAMP is at a high level, it may indicate that a logic level of the data DQ transitioned from high to low, and the data DQ was sampled as a high level at a rising edge of the shifted first strobe signal DQS_90. This may indicate that the rising edge of the delayed first strobe signal DQS_t leads the center of the data DQ. Therefore, the control logic 270 may increase the delay value of the delay circuit 210 by increasing the value of the delay code DCODE<0:N>. (3) When the transition level signal COM_ST is at a low level and the sampling result SAMP is at a low level, it may indicate that a logic level of the data DQ transitioned from low to high, and the data DQ was sampled as a low level at a rising edge of the shifted first strobe signal DQS_90. This may indicate that the rising edge of the delayed first strobe signal DQS_t leads the center of the data DQ. Therefore, the control logic 270 may increase the delay value of the delay circuit 210 by increasing the value of the delay code DCODE<0:N>.

The control logic 270 may generate the delay code DCODE<0:N> in synchronization with a falling edge of the shifted strobe signal DQS_90. That is, the control logic 270 may check the levels of the enable signal EN, the transition level signal COM_ST and the sampling result SAMP at a falling edge of the shifted strobe signal DQS_90, in order to perform the above-described operation.
Table 1 below summarizes the operation of the control logic 270.

<table>
<thead>
<tr>
<th>EN</th>
<th>COM_ST</th>
<th>H</th>
<th>H</th>
<th>L</th>
<th>don’t care</th>
<th>don’t care</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMP</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCODE=0:N></td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>FIX</td>
<td>(increase)</td>
</tr>
</tbody>
</table>

FIG. 3 is a timing diagram illustrating an operation of a data receiver circuit in accordance with an embodiment, for example, operation of the data receiver circuit 200 of FIG. 2 when rising edges of the delayed strobe signals DQS_t_d and DQS_c_d lag behind the center of the data DQ. Referring to FIG. 3, when the enable signal EN has a low level at a falling edge of the shifted strobe signal DQS_90, the value of the delay code DCODE=0:N> is fixed to the same value as the previous value. When the enable signal EN has a high level at a falling edge of the shifted strobe signal DQS_90, the value of the delay code DCODE=0:N> is adjusted to be decreased (i.e., “−1”) because the transition level signal COM_ST is at a low level and the sampling result SAMP is at a high level. When the value of the delay code DCODE=0:N> is adjusted to “−1”, the delay value of the delay circuit 210 may be reduced. Therefore, the rising edges of the delayed strobe signals DQS_t_d and DQS_c_d may become closer to the center of the data DQ.

FIG. 4 is a timing diagram illustrating an example of an operation of a data receiver circuit in accordance with an embodiment, for example, operation of the data receiver circuit 200 of FIG. 2 when rising edges of the delayed strobe signals DQS_t_d and DQS_c_d lead the center of the data DQ. Referring to FIG. 4, when the enable signal EN has a low level at a falling edge of the shifted strobe signal DQS_90, the value of the delay code DCODE=0:N> is fixed to the same value as the previous value. When the enable signal EN has a high level at a falling edge of the shifted strobe signal DQS_90, the value of the delay code DCODE=0:N> is adjusted to be increased (i.e., “+1”) because the transition level signal COM_ST is at a low level and the sampling result SAMP is at a low level. When the value of the delay code DCODE=0:N> is adjusted to “+1”, the delay value of the delay circuit 210 may be increased. Therefore, the rising edges of the delayed strobe signals DQS_t_d and DQS_c_d may become closer to the center of the data DQ.

As described above, the data receiver circuit 200 may adjust the delay value of the delay circuit 210 such that the rising edges of the delayed strobe signals (e.g., DQS_t_d and DQS_c_d) are aligned with the center of the data (e.g., DQ), thereby retaining the optimal timing margin between the delayed strobe signals and the data.

In accordance with embodiments of the present invention, the data receiver circuit can align the data and the data strobe signal.

Although various embodiments have been described and illustrated, it will be apparent to those skilled in the art in light of such disclosure that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.

What is claimed is:

1. A data receiver circuit comprising:
 a delay circuit suitable for delaying first and second strobe signals and generating delayed first and second strobe signals;
 a first receiver circuit suitable for sampling data in synchronization with the delayed first strobe signal;
 a second receiver circuit suitable for sampling the data in synchronization with the delayed second strobe signal;
 an enable signal generation circuit suitable for generating an enable signal indicating whether the data transitioned;
 a transition level generation circuit suitable for generating a transition level signal indicating a transition direction of the data;
 a phase shift circuit suitable for shifting the phase of the delayed first strobe signal by a set degree and generating a shifted first strobe signal;
 a sampling circuit suitable for sampling the data in synchronization with the shifted first strobe signal and generating a sampling result; and
 a control logic suitable for changing a delay value of the delay circuit in response to the transition level signal and the sampling result of the sampling circuit, when the enable signal is activated.

2. The data receiver circuit of claim 1, wherein the delayed second strobe signal has a phase difference of 180 degrees from the delayed first strobe signal.

3. The data receiver circuit of claim 2, wherein the enable signal generation circuit activates the enable signal when the data sampled by the first receiver circuit and the data sampled by the second receiver circuit are different from each other.

4. The data receiver circuit of claim 2, wherein the enable signal generation circuit comprises an XOR gate suitable for receiving the data sampled by the first receiver circuit and the data sampled by the second receiver circuit, performing an XOR operation on the data sampled by the first and second receiver circuits and outputting the enable signal based on the result of the XOR operation.

5. The data receiver circuit of claim 2, wherein the transition level generation circuit generates the transition level signal by sampling the data sampled by the first receiver circuit in synchronization with the delayed second strobe signal.

6. The data receiver circuit of claim 5, wherein the transition level generation circuit comprises a D flip-flop suitable for receiving the data sampled by the first receiver circuit through an input terminal thereof, receiving the delayed second strobe signal through a clock terminal thereof, and outputting the transition level signal through an output terminal thereof.

7. The data receiver circuit of claim 2, wherein the control logic generates a delay code for changing a delay value of the delay circuit, the delay value being controlled by the delay code.

8. The data receiver circuit of claim 7, wherein the control logic increases or decreases the value of the delay code in response to the transition level signal and the sampling result of the sampling circuit, when the enable signal is activated, and retains the value of the delay code when the enable signal is deactivated.

9. The data receiver circuit of claim 8, wherein the control logic is operated in synchronization with a falling edge of the shifted first strobe signal.

10. The data receiver circuit of claim 9, wherein the control logic decreases the delay value of the delay circuit.
when the enable signal is activated, the transition level signal indicates that a logic level of the data transitioned from high to low, and the sampling result of the sampling circuit is at a low level,

5 wherein the delay control logic increases the delay value of the delay circuit when the enable signal is activated, the transition level signal indicates that a logic level of the data transitioned from high to low, and the sampling result of the sampling circuit is at a high level,

wherein the delay control logic increases the delay value of the delay circuit when the enable signal is activated, the transition level signal indicates that a logic level of the data transitioned from low to high, and the sampling result of the sampling circuit is at a low level,

wherein the delay control logic decreases the delay value of the delay circuit when the enable signal is activated, the transition level signal indicates that a logic level of the data transitioned from low to high, and the sampling result of the sampling circuit is at a high level.

11. The data receiver circuit of claim 1, wherein the set degree by which the phase shift circuit shifts the phase of the delayed first strobe signal is 90 degrees.

12. A circuit comprising:

a delay circuit suitable for delaying first and second strobe signals by a set delay value and generating delayed first and second strobe signals;

a receiver circuit suitable for sampling data in synchronization with the delayed first strobe signal, and sampling the data in synchronization with the delayed second strobe signal;

a phase shift circuit suitable for shifting the phase of the delayed first strobe signal by a set degree and generating a shifted first strobe signal;

a sampling circuit suitable for sampling the data in synchronization with the shifted first strobe signal and generating a sampling result; and

a control logic suitable for controlling the delay value of the delay circuit based on the sampling result of the sampling circuit when the data transitioned.

13. The circuit of claim 12, further comprising an enable signal generation circuit suitable for generating an enable signal indicating whether the data transitioned;

a transition level generation circuit suitable for generating a transition level signal indicating a transition direction of the data,

wherein the control logic increases or decreases the delay value of the delay circuit based on the transition level signal and the sampling result of the sampling circuit when the enable signal is activated.

14. The circuit of claim 13, wherein the control logic generates a delay code for changing the delay value of the delay circuit and retains the delay value of the delay code when the enable signal is deactivated.

15. The circuit of claim 13, wherein the control logic is operated in synchronization with a falling edge of the shifted first strobe signal.

16. The circuit of claim 14, wherein the control logic decreases the delay value of the delay circuit when the enable signal is activated, the transition level signal indicates that a logic level of the data transitioned from high to low, and the sampling result of the sampling circuit is at a low level.

17. The circuit of claim 14, wherein the delay control logic increases the delay value of the delay circuit when the enable signal is activated, the transition level signal indicates that a logic level of the data transitioned from high to low, and the sampling result of the sampling circuit is at a high level.

18. The circuit of claim 14, wherein the delay control logic increases the delay value of the delay circuit when the enable signal is activated, the transition level signal indicates that a logic level of the data transitioned from low to high, and the sampling result of the sampling circuit is at a low level.

19. The circuit of claim 14, wherein the delay control logic decreases the delay value of the delay circuit when the enable signal is activated, the transition level signal indicates that a logic level of the data transitioned from low to high, and the sampling result of the sampling circuit is at a high level.

* * * * *